欢迎您!
东篱公司
退出
申报数据库
申报指南
立项数据库
成果数据库
期刊论文
会议论文
著 作
专 利
项目获奖数据库
位置:
成果数据库
>
期刊
> 期刊详情页
Omori-Yau maximum principles, -harmonic maps and their geometric applications
ISSN号:0232-704X
期刊名称:Annals of Global Analysis and Geometry
时间:2014.10
页码:259-279
相关项目:旋量场与流形的几何分析
作者:
Qun Chen|Juergen Jost|Hongbing Qiu|
同期刊论文项目
旋量场与流形的几何分析
期刊论文 17
同项目期刊论文
Bochner-type formulas for transversally harmonic maps
Omori-Yau maximum principles, V-harmonic maps and their geometric applications
The boundary value problem for Dirac-harmonic maps
AN ESTIMATE FOR THE MEAN CURVATURE OF SUBMANIFOLDS CONTAINED IN A HOROBALL
Heat Flows of Subelliptic Harmonic Maps into Riemannian Manifolds with Nonpositive Curvatures
The extension of the H (k) mean curvature flow in Riemannian manifolds
The maximum principle and the Dirichlet problem for Dirac-harmonic maps
Inequalities of Simons type and gaps for Yang-Mills fields
Monotonicity formulas for Bakry-Emery Ricci curvature
Dirac-geodesics and their heat flows
The finite S-determinacy of singularities in positive characterisitic
A maximum principle for generalizations of harmonic maps in Hermitian, affine, Weyl, and Finsler geo
Hardy-type inequalities on a half-space in the Heisenberg group
Gradient estimates and Liouville theorems for Dirac-harmonic maps
靶流形为球面子流形的调和映射的量子化现象(英文)