位置:成果数据库 > 期刊 > 期刊详情页
基于RBF网络的扫描体制雷达DOA估计方法
  • ISSN号:1009-3516
  • 期刊名称:《空军工程大学学报:自然科学版》
  • 时间:0
  • 分类:TP391.1[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]空军工程大学导弹学院,陕西三原713800, [2]驻航天科工集团二院23所军代表室,北京100854
  • 相关基金:国家自然科学基金资助项目(60601016)
中文摘要:

针对传统扫描体制雷达无法分辨半功率波束宽度内存在多目标的问题,利用阵列信号处理的思想,把RBF神经网络理论应用于机扫雷达的DOA高分辨估计。首先给出了扫描体制雷达DOA估计的信号模型,提出了一种基于RBF网络实现扫描体制雷达DOA高分辨估计的SRBF算法。然后针对RBF网络存在的学习收敛速度慢等问题,给出了基于模糊学习矢量量化(Fuzzy Algorithm for Learning Vector Quantization,FLVQ)的网络学习算法,FLVQ方法采用模糊C均值方法中的模糊权重函数在线自适应调整,来确定输入和中心之间的权值,使得网络具有更高的非线性逼近性能和高效的收敛性。理论分析和仿真结果均表明SRBF网络具有快速准确的DOA估计能力,算法便于工程实现,具有较高的实用价值。

英文摘要:

In view of the problem that multiple targets are present in the main - lobe of the rotating radar, a method based on the idea of spatial spectrum estimation is proposed, which apples the RBF neural network theory to scanning radar. First a signal model of scanning radar system DOA estimation is presented and a high resolution DOA estimation algorithm is advanced based on RBF network. Then the lower speed of learning and convergence for conventional method is analyzed , thereafter a network learning algorithm based on fuzzy algorithm for learning vector quantization is proposed. In this method, the fuzzy weigh function of the mean of fuzzy - C and the online adaptive adjustment is adopted to determine the weigh between the input and the centre, which makes the network possess a better nonlinear approach performance and high - efficiency convergence. Both the theoretical analysis and the simulation results indicate that this network is fast and exact in estimation performance. The algorithm is effective and is of higher practical value.

同期刊论文项目
期刊论文 63 会议论文 17
同项目期刊论文
期刊信息
  • 《空军工程大学学报:自然科学版》
  • 北大核心期刊(2011版)
  • 主管单位:空军工程大学
  • 主办单位:空军工程大学科研部
  • 主编:于雷
  • 地址:西安市空军工程大学
  • 邮编:710051
  • 邮箱:kgdbjb@163.com
  • 电话:029-8476434
  • 国际标准刊号:ISSN:1009-3516
  • 国内统一刊号:ISSN:61-1338/N
  • 邮发代号:52-247
  • 获奖情况:
  • 中国期刊方阵"双效"期刊,陕西省优秀科技期刊,2004年中国高校优秀科技期刊二等奖,2006年中国高校优秀科技期刊奖,2008年中国高校优秀科技期刊奖,2009年中国高校科技期刊编辑质量优秀奖,2010年中国高校优秀科技期刊奖,2004年综合性科学技术类核心期刊,2008年综合性科学技术类核心期刊,2009年、2011年RCCSE中国核心学术期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:5808