给出了最佳参数a1,a2,a3,β1,β2,β3∈R,使得双向不等式a1Q(a,b)+(1-a1)G(a,b)〈T[A(a,b),Q(a,b)]〈β1Q(a,b)+(1-β1)G(a,b),a2Q(a,b)+(1-a2)G(a,b)〈T[A(a,b),Q(a,b)]〈β2Q(a,b)+(1-β2)G(a,b),a3Q(a,b)+(1-a3)G(a,b)〈T[A(a,b),Q(a,b)]〈β3Q(a,b)+(1-β3)G(a,b)对所有a,b〉0且a≠b成立.其中A(a,b)=(a+b)/2,H(a,b)=2ab/(a+b),G(a,b)=√ab,Q(ab,b)=√(a2+b2)/2,C(a,b)=(a2+b2)/(a+b),T(a,b)=2/π∫0^π/2 √a2cos2t+b2sin2tdt分别是两个正数a和b的算术平均,调和平均,几何平均,二次平均,反调和平均和Toader平均.
In this paper, we present the best possible parameters a1, a2, a3, β1, β2, β3 ∈R such that the double inequalities a1Q(a,b)+(1-a1)G(a,b)〈T[A(a,b),Q(a,b)]〈β1Q(a,b)+(1-β1)G(a,b),a2Q(a,b)+(1-a2)G(a,b)〈T[A(a,b),Q(a,b)]〈β2Q(a,b)+(1-β2)G(a,b),a3Q(a,b)+(1-a3)G(a,b)〈T[A(a,b),Q(a,b)]〈β3Q(a,b)+(1-β3)G(a,b) hold for all a,b〉0 with a≠b, where A (a,b)=(a+b)/2,H(a,b)=2ab/(a+b),G(a,b)=√ab,Q(ab,b)=√(a2+b2)/2,C(a,b)=(a2+b2)/(a+b),T(a,b)=2/π∫0^π/2 √a2cos2t+b2sin2tdt are respectively the arithmetic, harmonic, geometric, quadratic, contraharmonic and Toader means of a and b, respectively.