象 Graphene 一样,第三的系统 B-C-N 原子层材料答应高度悦耳的电子性质和潜在的应用程序的过多。然而, B-C-N 原子层的这样远的、试验性的合成通常产出由纯 C 和 BN 领域组成的显微镜的分离阶段的结构。进一步,与同质的原子安排种真正第三的 B-C-N 阶段层证明了很挑战性。这里,在为化学蒸汽免职( CVD )设计一个 bettercontrolled 过程, B-C-N 原子层的生长与最小化的 C 和 BN 阶段分离拍摄,我们选择了 trimethyl borane ( TMB ),有先存在的气体的 organoboron 混合物 B-C 契约,作为分子的先锋到与氨反应(用作氮的硝化作用代理人的 NH 3)气体。这位唯一的 B-C 交货先锋的使用允许高质量、大区域的 B-C-N 原子层电影的成功的合成。而且, TMB/NH 3 反应物联合能由调整二气体的反应物的相对部分压力提供 tunability 的高水平和 B-C-N 原子层的全面化学作文的控制。有限精力差距能在成长得当的 B-C-N 原子层和它的 tunability 被打开的电的运输大小表演实质上依赖于到 BN 原子作文的相对 C。根据小心地控制的实验,我们证明在 TMB 分子的先锋的先存在的 B-C 契约在有效地减少 C 和 BN 阶段分离问题起了一个关键作用,从而便于真正第三的 B-C-N 的形成分阶段执行原子层。
Graphene-like, ternary system B-C-N atomic layer materials promise highly tunable electronic properties and a plethora of potential applications. However, thus far, experimental synthesis of the B-C-N atomic layers normally yields a microscopic phase-segregated structure consisting of pure C and BN domains. Further, growing the truly ternary B-C-N phase layers with homogenous atomic arrangements has proven to be very challenging. Here, in designing a better- controlled process for the chemical vapor deposition (CVD) growth of B-C-N atomic layer films with the minimized C and BN phase segregation, we selected trimethyl borane (TMB), a gaseous organoboron compound with pre-existing B--C bonds, as the molecular precursor to react with ammonia (NH3) gas that serves as the nitrification agent. The use of this unique B-C delivery precursor allows for the successful synthesis of high-quality and large-area B-C-N atomic layer films. Moreover, the TMB/NH3 reactant combination can offer a high level of tunability and control of the overall chemical composition of B-C-N atomic layers by regulating the relative partial pressure of two gaseous reactants. Electrical transport measurements show that a finite energy gap can be opened in the as-grown B-C-N atomic layers and its tunability is essentially dependent on the relative C to BN atomic compositions. On the basis of carefully controlled experiments, we show that the pre-existing B-C bonds in the TMB molecular precursor have played a crucial role in effectively reducing the C and BN phase segregation problem, thereby facilitating the formation of truly ternary B-C-N phase atomic layers.