位置:成果数据库 > 期刊 > 期刊详情页
全局自适应蚁群优化算法
  • ISSN号:1000-1220
  • 期刊名称:《小型微型计算机系统》
  • 时间:0
  • 分类:TP18[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]吉林大学计算机科学与技术学院,吉林长春130012, [2]吉林大学符号计算与知识工程教育部重点实验室,吉林长春130012
  • 相关基金:国家自然科学基金(60573128)资助;教育部博士点基金(20060183043)资助.
中文摘要:

为解决蚁群算法存在的收敛速度慢和容易陷入局部最优等缺点,分析了其产生的主要原因,介绍了AS和MMAS算法的工作原理,并基于参数自适应思想,提出了全局自适应蚁群优化算法(GAO).对状态转移和信息素更新等规则做出改进,详尽给出了GAO的编程步骤.针对TSP问题,通过与AS和MMAS算法的数值实验结果比较分析,表明GAO算法具有优良的全局优化能力和适当的收敛时间.

英文摘要:

Ant colony algorithm has slow convergence speed and is easy to fall in local optimal, in order to overcome these shortcomings, the principles of AS algorithm and MMAS algorithm were introduced. Then the main reasons of these shortcomings were analyzed and based on the idea of parametric adaptation an improved ant colony algorithm with global adaptive optimization (GAO) was put forward. Some improvements of rules were made such as state transfer and pheromone update, and then the detailed program steps of GAO were listed. Compared with AS and MMAS for the Traveling Salesman Problem (TSP), the simulation results show that GAO has excellent global optimization capabilities and appropriate convergence time.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《小型微型计算机系统》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院沈阳计算技术研究所
  • 主编:林浒
  • 地址:沈阳市浑南新区南屏东路16号
  • 邮编:110168
  • 邮箱:xwjxt@sict.ac.cn
  • 电话:024-24696120 024-24696190-8870
  • 国际标准刊号:ISSN:1000-1220
  • 国内统一刊号:ISSN:21-1106/TP
  • 邮发代号:8-108
  • 获奖情况:
  • 中国自然科学核心期刊,中国科学引文数据库来源期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,荷兰文摘与引文数据库,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:23212