如果在 G 和着色没有 2-colored 周期,图 G 的合适的边着色被称为邻近的区分顶点的非循环的边着色的 A 边设定有 u 的事件不等于有 v 的边事件的着色集合,在的地方 uv E (G) 。区分非循环的边的邻近的顶点 G 的色彩的数字,由 x Aa (G) 表示了,在一个邻近的顶点的颜色的最小的数字正在区分 G 的非循环的边着色。如果图 G 有一个邻近的顶点区分非循环的边着色,那么, G 被称为邻近的顶点区分非循环。在这份报纸,我们获得一些图的邻近的区分顶点的非循环的边着色并且提出一些推测。
A proper edge coloring of a graph G is called adjacent vertex-distinguishing acyclic edge coloring if there is no 2-colored cycle in G and the coloring set of edges incident with u is not equal to the coloring set of edges incident with v, where uv∈ E(G). The adjacent vertex distinguishing acyclic edge chromatic number of G, denoted by X'Aa(G), is the minimal number of colors in an adjacent vertex distinguishing acyclic edge coloring of G. If a graph G has an adjacent vertex distinguishing acyclic edge coloring, then G is called adjacent vertex distinguishing acyclic. In this paper, we obtain adjacent vertex-distinguishing acyclic edge coloring of some graphs and put forward some conjectures.