two-time-level,三维的数字海洋发行量模型(命名 MASNUM ) 与一个二水平的、单个步的 Eulerian 提交向后时差计划被建立。大规模海洋的运动的一个数学模型基于协调的地面追随者, Boussinesq,海洋动力学的平均 Reynolds 的原始方程。一个简单却很实际的 Eulerian 提交向后方法被采用为 barotropic 和 baroclinic 模式作为时差方法代替大多数比较喜欢的跳蛙游戏计划。提交向后方法具有精确性的秒顺序,由每时间步要求一仅仅功能评估计算地有效,并且没有在三水平的计划固有的计算模式。这个方法比跳蛙游戏计划优异因为稳定性的最大的时间步骤这样象在蹒跚的网孔的跳蛙游戏计划的一样两次大计算效率能被加倍。一个空间变光滑方法被介绍在数字集成控制非线性的不稳定性。模仿赤道的 Rossby soliton 的繁殖的一个理想的数字实验被执行测试振幅和这个新模型的阶段错误。这个发行量模型的表演进一步被验证与一地区性(西北太平洋) 并且一伪全球(有排除的北极海洋的全球海洋模拟) 模拟实验。这二个数字实验与观察显示出相当好的同意。在这二个实验的稳定性的最大的时间步也在采用跳蛙游戏计划的这个模型和那个模型之间被调查并且比较。
A two-time-level, three-dimensional numerical ocean circulation model(named MASNUM) was established with a two-level, single-step Eulerian forward-backward time-differencing scheme. A mathematical model of large-scale oceanic motions was based on the terrain-following coordinated, Boussinesq, Reynolds-averaged primitive equations of ocean dynamics. A simple but very practical Eulerian forward-backward method was adopted to replace the most preferred leapfrog scheme as the time-differencing method for both barotropic and baroclinic modes. The forward-backward method is of second-order of accuracy, computationally efficient by requiring only one function evaluation per time step, and free of the computational mode inherent in the three-level schemes. This method is superior to the leapfrog scheme in that the maximum time step of stability is twice as large as that of the leapfrog scheme in staggered meshes thus the computational efficiency could be doubled. A spatial smoothing method was introduced to control the nonlinear instability in the numerical integration. An ideal numerical experiment simulating the propagation of the equatorial Rossby soliton was performed to test the amplitude and phase error of this new model. The performance of this circulation model was further verified with a regional(northwest Pacific) and a quasi-global(global ocean simulation with the Arctic Ocean excluded) simulation experiments. These two numerical experiments show fairly good agreement with the observations. The maximum time step of stability in these two experiments were also investigated and compared between this model and that model which adopts the leapfrog scheme.