位置:成果数据库 > 期刊 > 期刊详情页
基于简易支持向量机的客户流失预测研究
  • 期刊名称:计算机应用研究
  • 时间:0
  • 页码:904-906
  • 语言:中文
  • 分类:F830.133[经济管理—金融学]
  • 作者机构:[1]广西财经学院工商管理系,南宁530003
  • 相关基金:国家自然科学基金资助项目(70801021);国家教育部人文社会科学研究基金资助项目(08JC630019);广西高校优秀人才资助计划项目(桂教人[2009]62号文)
  • 相关项目:客户流失预测理论与实证研究
作者: 夏国恩|
中文摘要:

应用简易支持向量机(SSVM)进行客户流失预测,以提高机器学习方法的预测能力。以国外电信公司客户流失预测为实例,与最近邻算法(NPA)进行了对比,发现该方法在获得与NPA近似准确率的条件下,所花费的时间和时间增加值远小于NPA,是研究客户流失预测问题的有效方法。

英文摘要:

To improve the prediction abilities of machine learning methods, this paper applied a simple support vector machine(SSVM) to customer churn prediction. The method was compared with NPA regarding customer churn prediction for foreign telecommunication carrier. It was found that the method need less time and adding time with the consistent precision, and provided an effective measurement for customer churn prediction.

同期刊论文项目
期刊论文 25 会议论文 2 获奖 1 著作 1
同项目期刊论文