位置:成果数据库 > 期刊 > 期刊详情页
一种基于子空间学习的实时目标跟踪算法
  • ISSN号:1003-501X
  • 期刊名称:《光电工程》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]合肥工业大学计算机与信息学院,合肥230009
  • 相关基金:中国博士后基金面上项目(2013M531504);教育部留学回国人员科研启动基金资助项目;国家自然科学基金面上项目(61471154)
中文摘要:

针对当前目标跟踪算法鲁棒性低且运算慢的问题,本文提出了一种基于子空间学习的实时目标跟踪算法。该方法在粒子滤波跟踪框架下,采用增量式PCA子空间学习方法学习一个正交子空间,利用学习到的正交子空间对目标外观进行线性表示;针对目标在遮挡、运动模糊等复杂干扰状态下容易产生跟踪漂移的问题,本文建立了一个将遮挡等复杂因素考虑在内的观测模型和模板更新方案,解决了基于最小均方误差准则的传统观测模型在复杂场景下的跟踪漂移问题。实验结果表明,本文的跟踪方法能够达到很高的跟踪精度,同时也达到了接近实时的跟踪速度。

英文摘要:

Because of the poor efficiency and effectiveness of current visual tracking algorithms, a real-time object tracking algorithm is proposed based on subspace learning.Under the framework of particle filtering, this paper uses the incremental PCA subspace method to learn an orthogonal subspace, and then get the linear representation of target appearance. In order to avoid the tracking drift produced by complicated interference, such as occlusions, motion blur and so on, an observation model and a template update scheme are built, which consider the complicated interference especially occlusions, to solve the drift problem of the traditional observation model based onminimum mean square error. The experimental results show that the algorithm in complicated conditions can be well implemented compared with several state-of-the-art algorithms.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《光电工程》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院光电技术研究所 中国光学学会
  • 主编:罗先刚
  • 地址:四川省成都市双流350信箱
  • 邮编:610209
  • 邮箱:oee@ioe.ac.cn
  • 电话:028-85100579
  • 国际标准刊号:ISSN:1003-501X
  • 国内统一刊号:ISSN:51-1346/O4
  • 邮发代号:62-296
  • 获奖情况:
  • 四川省第二次期刊质量考评自然科学期刊学术类质量...,四川省第二届优秀期刊评选科技类期刊三等奖
  • 国内外数据库收录:
  • 美国化学文摘(网络版),荷兰文摘与引文数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:14003