位置:成果数据库 > 期刊 > 期刊详情页
基于光流块统计特征的视频异常行为检测算法
  • ISSN号:1006-2467
  • 期刊名称:《上海交通大学学报》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]上海交通大学电子信息与电气工程学院,上海200240, [2]上海交通大学信息内容分析技术国家工程实验室,上海200240
  • 相关基金:国家自然科学基金项目(61272249,61272439); 上海市科委国际研究合作项目(12510708500); 国家教委博士点专项基金项目(20120073110053); 软件工程国家实验室开放研究基金项目(SKLSE2012-09-12)资助
中文摘要:

提出了一种基于光流块统计特征的视频异常行为检测算法.该算法首先对训练集视频序列的光流场进行分块及预处理,而后提取光流块的统计特征,所提取的块统计特征同时包括了光流块的幅度信息和相位信息,通过训练集得到的光流块统计特征训练出对应的正常行为的高斯混合模型(GMM).测试集通过同样的方式提取光流块统计特征,通过计算所提取统计特征以多大的概率属于GMM判定所检测光流块的异常程度.实验结果表明,该算法能够在一定程度上解决运动物体一致性和部分遮挡问题,并提高了异常行为检测的准确率.

英文摘要:

An anomaly detection algorithm based on the statistic feature of optical flow block was proposed.First,the whole optical flow field of training video sequences were obtained.Then,each optical flow field was divided into blocks and each block was preprocessed in order to extract the statistic feature considering both magnitude and phase information of the block.The Gaussian mixture model(GMM)was employed to establish the probability model of normal behaviors by feeding the statistic feature into it.The abnormal degree of the optical flow block was judged by the output posterior probability of the GMM probabilistic model.The experimental results show that the method proposed considers both the consistency information of moving objects and the partial occlusion issue,at the same time,improves the accuracy of anomaly detection.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《上海交通大学学报》
  • 中国科技核心期刊
  • 主管单位:中华人民共和国教育部
  • 主办单位:上海交通大学
  • 主编:郑杭
  • 地址:上海市华山路1954号15F
  • 邮编:200030
  • 邮箱:shjt@chinajournal.net.cn
  • 电话:021-62933373 62932534
  • 国际标准刊号:ISSN:1006-2467
  • 国内统一刊号:ISSN:31-1466/U
  • 邮发代号:4-256
  • 获奖情况:
  • 1996年全国优秀科技期刊奖,1992年、1996年、1999年国家教育部系统优秀科技期刊奖,2002年“百种重点期刊奖”,2003年百种中国杰出学术期刊,2004年教育部全国高校优秀科技期刊一等奖,2004年“百种重点期刊奖”
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:30903