位置:成果数据库 > 期刊 > 期刊详情页
用近红外光谱预测土壤碳含量的研究
  • ISSN号:1001-9014
  • 期刊名称:《红外与毫米波学报》
  • 时间:0
  • 分类:S123[农业科学—农业基础科学] TH744.1[机械工程—光学工程;机械工程—仪器科学与技术;机械工程—精密仪器及机械]
  • 作者机构:[1]浙江大学环境与资源学院,浙江杭州310029, [2]密歇根州立大学作物与土壤科学系,密歇根东兰辛48824;美国
  • 相关基金:国家科技支撑计划项目(2006BAD10A07);国家自然科学基金(40201021)
中文摘要:

以田间行走式设备获取的近红外光谱数据为基础,利用最小二乘回归法(PLSR)建立了应用近红外光谱数据预测土壤碳含量的校正模型,与利用原始光谱数据建立的模型相比,应用经比值或归一化差值处理的光谱数据建立的校正模型可以提高预测精度.精度提高的原因可能是光谱数据经过波段算术组合处理后,能降低模型建立过程中产生过配的风险,使模型能包括更多的成分和信息.研究结果表明,利用偏最小二乘回93法,可以有效地建立田间近红外光谱与土壤碳含量之间的校正模型;同时,应用比值或归一化差值这些波段算术组合方法来处理近红外光谱数据,可以进一步提高模型的预测精度.因此,应用行走式设备获取的近红外光谱数据来快速测定田间土壤中碳的含量是可行的.

英文摘要:

Partial least squares regression (PLSR) was employed to build predicting model of the content of soil carbon with on-the-go near-infrared reflectance spectroscopy (NIRS) measurements. The model based on band ratio or normalized difference of NIRS data can improve the prediction precision than the model with the original NIRS data. The reasons might be that the process of band arithmetic combination could reduce the risk of overfitting and it made the model include more useful components and information. The results show that the effective calibration model between field NIRS and the content of soil carbon can be set up by PLSR, and predicting precision can be improved while band arithmetic combination of ratio or normalized difference is performed on the NIRS data before modeling. Thus, it is feasible to estimate the content of soil carbon quickly in the field by on-the-go NIRS measurement.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《红外与毫米波学报》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院上海技术物理研究所 中国光学学会
  • 主编:褚君浩
  • 地址:上海市玉田路500号
  • 邮编:200083
  • 邮箱:jimw@mail.sitp.ac.cn
  • 电话:021-25051553
  • 国际标准刊号:ISSN:1001-9014
  • 国内统一刊号:ISSN:31-1577/TN
  • 邮发代号:4-335
  • 获奖情况:
  • 1992、1996年获全国优秀学术期刊一等奖,1999年首届国家期刊奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,美国科学引文索引(扩展库),日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),瑞典开放获取期刊指南,中国北大核心期刊(2000版)
  • 被引量:8778