位置:成果数据库 > 期刊 > 期刊详情页
基于张量投票的图像超分辨率算法
  • ISSN号:1673-629X
  • 期刊名称:《计算机技术与发展》
  • 时间:0
  • 分类:TP391.4[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]中南大学信息科学与工程学院,湖南长沙410083
  • 相关基金:基金项目:国家自然科学基金资助项目(60873188)
中文摘要:

张量投票算法在提取图像主观轮廓上具有良好的效果,本文提出了一种基于张量投票的图像超分辨率算法。首先用二维张量矩阵存储低分辨率图像各像素点所处的位置特征信息,并利用稀疏张量投票将特征信息进行加强,再使用稠密张量投票产生高分辨率图像对应的二维张量矩阵,此张量矩阵包含了视觉特性强的边缘信息,最后利用该边缘信息指导高分辨率图像的重构。实验结果表明,该方法得到的高分辨率图像信噪比高、视觉效果好。

英文摘要:

Tensor voting algorithm has a good effect in extracting subjective contour of image. This article proposes a image super-resolution algorithm based on tensor voting.First of all,using two-dimensional tensor matrix storing each pixel's location feature information of low-resolution image, feature information is strengthened by sparse tensor voting. Then a two-dimensional tensor matrix corresponding to high-resolution image is generated by dense tensor voting, the tensor matrix contains edge information with strong visual characteristics. Finally, using the edge information to guide high-resolution image reconstruction. The experimental results show that high-resolution image obtained by our method with high SNR and godd visual effect.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机技术与发展》
  • 中国科技核心期刊
  • 主管单位:陕西省工业和信息化厅
  • 主办单位:陕西省计算机学会
  • 主编:王守智
  • 地址:西安市雁塔路南段99号
  • 邮编:710054
  • 邮箱:ctad@vip.163.com
  • 电话:029-85522163
  • 国际标准刊号:ISSN:1673-629X
  • 国内统一刊号:ISSN:61-1450/TP
  • 邮发代号:52-127
  • 获奖情况:
  • 《CAJ-CD规范》执行优秀期刊
  • 国内外数据库收录:
  • 中国中国科技核心期刊
  • 被引量:21263