位置:成果数据库 > 期刊 > 期刊详情页
基于PSO-ICA和RBF神经网络的转炉炼钢终点预报模型
  • ISSN号:1002-0411
  • 期刊名称:《信息与控制》
  • 时间:0
  • 分类:TF724[冶金工程—钢铁冶金]
  • 作者机构:[1]大连理工大学电子与信息工程学院,辽宁大连116024
  • 相关基金:国家863计划资助项目(2007AA042158);国家科技支撑计划资助项目(2006BAB14805);国家973计划资助项目(2006CB403405);国家自然科学基金资助项目(60674073).
中文摘要:

提出将微粒群优化算法和独立成分分析引入到径向基函数神经网络模型用于转炉炼钢终点预报.利用微粒群优化算法的全局遍历特性和快速不动点算法的局部寻优能力,改进了传统的独立成分分析算法,解决了其目标函数易陷入局部最优和独立特征排序不确定的问题,压缩冗余信息并降低输入维数.将提取出的独立特征输入径向基函数神经网络,预报终点温度和碳含量.对转炉生产实测数据进行了仿真,结果表明该模型能有效提高预报精度,保证预报的可靠性.

英文摘要:

A radial basis function neural network model combined with particle swarm optimization algorithm and inde- pendent component analysis is proposed to predict the endpoint of BOF (basic oxygen furnace)steelmaking. In order to solve the issues that the objective function falls into the local optimum and the sequence of independent components is uncertain, this paper utilizes the global ergodicity of particle swarm optimization algorithm and the local optimizing capacity of fast fixed-point algorithm to improve the traditional independent component analysis algorithm, as well as the redundant infor- mation is compressed and the input dimension is reduced. The extracted independent features are introduced into the radial basis function neural network to predict the endpoint temperature and carbon content. Simulations are made with the practical data of BOF production, and the result proves the proposed model can improve the accuracy and reassure the reliability of prediction.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《信息与控制》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学院
  • 主办单位:中国自动化学会 中国科学院沈阳自动化研究所
  • 主编:王天然
  • 地址:沈阳市南塔街114号
  • 邮编:110016
  • 邮箱:xk@sia.cn
  • 电话:024-23970049
  • 国际标准刊号:ISSN:1002-0411
  • 国内统一刊号:ISSN:21-1138/TP
  • 邮发代号:
  • 获奖情况:
  • 全国优秀期刊三等奖,中科院优秀期刊三等奖,辽宁省优秀期刊一等奖
  • 国内外数据库收录:
  • 美国数学评论(网络版),荷兰文摘与引文数据库,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:12960