位置:成果数据库 > 期刊 > 期刊详情页
基于近红外反射光谱的外来入侵植物的辨识
  • ISSN号:1000-0593
  • 期刊名称:《光谱学与光谱分析》
  • 时间:0
  • 分类:TS264.2[轻工技术与工程—发酵工程;轻工技术与工程—食品科学与工程]
  • 作者机构:[1]浙江大学生物系统工程与食品科学学院,浙江杭州310029, [2]浙江大学环境与资源学院,浙江杭州310029
  • 相关基金:基金项目:国家高技术研究发展计划(“863”计划)项目(2007AA10Z210);国家自然科学基金项目(30671213);浙江省自然科学基金项目(Y307119);浙江省科技计划项目(2008C23010)和教育部人文社会科学研究一般项目(06JAZH001)资助
中文摘要:

提出了一种利用可见-近红外反射光谱技术对婆婆纳、波斯婆婆纳、直立婆婆纳等3种入侵植物和本地杂草宝盖草的植物辨别方法,可以对外表相似度极高的这4种植物进行有效鉴别。研究在对光谱曲线进行预处理和聚类分析后,随机采用30×4个样本作为建模样本,其余的20×4个样本作为预测样本,应用独立软模式法SIMCA(soft independent models of class analogy)进行分类,在显著性水平为5%下,其预测分辨率为78.75%,去除婆婆纳后的预测分辨率为90%。根据变量建模能力(modeling power)值,找到敏感波段496~521,589~626和789~926nm,并将相应的波段的光谱值作为最小二乘的支持向量机LS-SVM(least squares support vector machine)的输入,进行建模预测,并以预测结果作为目标函数值,进行遗传算法GA(genetic algorithm)优化,结果发现,预测分辨率达95.35%,辨识效果好,能快速正确区分外来入侵植物。

英文摘要:

The feasibility of visible and short-wave near-infrared spectroscopy (VIS/WNIR) techniques as means for the nondestructive and fast detection of alien invasive weeds was evaluated. Selected sensitive bands were found validated. In the present study,3 kinds of alien invasive weeds,Veronica persica,Veronica polita,and Veronica arvensis Linn,and one kind of local weed,Lamiaceae amplexicaule Linn,were employed. The results showed that visible and NIR (Vis/NIR) technology could be introduced in classification of the alien invasive weeds or local weed with the similar outline. Thirty×4 weeds samples were randomly selected for the calibration set,while the remaining 20×4 samples for the prediction set. Smoothing methods of moving average and standard normal variate (SNV) were used to pretreat spectra data. Based on principal components analysis,soft independent models of class analogy (SIMCA) were applied to make the model. Four frontal principal components of each catalogues were applied as the input of SIMCA,and with a significance level of 0.05,recognition ratio of 78.75% was obtained. The average prediction result is 90% except for Veronica polita. According to the modeling power of each spectra data in SIMCA,some possible sensitive bands,496-521,589-626 and 789-926 nm,were founded. By using these possible sensitive bands as the inputs of least squares support vector machine (LS-SVM),and setting the result of LS-SVM as the object function value of genetic algorithm (GA),mutational rate,crossover rate and population size were set up as 0.9,0.5 and 50 respectively. Finally,recognition ratio of 95.63% was obtained. The prediction results of 95.63% indicated that the selected wavelengths reflected the main characteristics of the four weeds,which proposed a new way to accelerate the research on cataloguing alien invasive weeds.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《光谱学与光谱分析》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国光学学会
  • 主编:高松
  • 地址:北京海淀区魏公村学院南路76号
  • 邮编:100081
  • 邮箱:chngpxygpfx@vip.sina.com
  • 电话:010-62181070
  • 国际标准刊号:ISSN:1000-0593
  • 国内统一刊号:ISSN:11-2200/O4
  • 邮发代号:82-68
  • 获奖情况:
  • 1992年北京出版局编辑质量奖,1996年中国科协优秀科技期刊奖,1997-2000获中国科协择优支持基础性高科技学术期刊奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国生物医学检索系统,美国科学引文索引(扩展库),英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),英国英国皇家化学学会文摘,中国北大核心期刊(2000版)
  • 被引量:40642