The electronic structure of nitrogen trifluoride was investigated by combining the high-resolution electron momentum spectroscopy with the high-level calculations. The experimental binding energy spectra and the momentum distributions of each orbital were compared with the results of Hartree–Fock, density functional theory(DFT), and symmetry-adaptedcluster configuration-interaction(SAC-CI) methods. SAC-CI and DFT-B3 LYP with the aug-cc-pVTZ basis set can well reproduce the binding energy spectra and the observed momentum distributions of the valence orbitals except 1a2 and 4e orbitals. It was found that the calculated momentum distributions using DFT-B3 LYP are even better than those using the high-level SAC-CI method.
The electronic structure of nitrogen trifluoride was investigated by combining the high-resolution electron momentum spectroscopy with the high-level calculations. The experimental binding energy spectra and the momentum distributions of each orbital were compared with the results of Hartree-Fock, density functional theory (DFT), and symmetry-adapted- cluster configuration-interaction (SAC-CI) methods. SAC-CI and DFT-B3LYP with the aug-cc-pVTZ basis set can well reproduce the binding energy spectra and the observed momentum distributions of the valence orbitals except 1 a2 and 4e orbitals. It was found that the calculated momentum distributions using DFT-B3LYP are even better than those using the high-level SAC-CI method.