主要在齐次的Neumann边界条件下,对两类带有指数反应项与积分项的扩散系统展开研究。通过构建常微分系统证明了解的全局存在性,并得到解爆破、全局存在的充分条件.此外,对于爆破解,还给出了关于解的爆破精确估计,以及其在爆破时刻的渐近行为。
This paper mainly investigates two types of diffusion system with exponent reaction term and integral term under the homogeneous Neumann boundary conditions. We prove global existence of solutions by constructing ordinary differential system,and obtain the sufficient conditions of global solutions' existence and blow-up. Moreover,we also propose a precise estimate for blow-up solutions and the corresponding asymptotic behavior at the blowing up time.