令H是一个复的、可分的、无穷维的Hilbert空间,L(H)表示H上有界线性算子的全体.算子T∈L(H)称为强不可约的,如果的换位代数没有非平凡的幂等元.本文对于算子类F={T∈L(H)〈σ(T)连通,且A'(T)={R(T)
Let H be a complex, separable, infinite dimensional Hilbert space and L(H) denote the collection of bounded linear operators on H. An operator T in L(H)is said to be strongly irreducible, if A'(T) has no non-trivial idempotent.In the paper, we discuss the following operator class: F={T∈L(H)σ(T)= is connected and A'(T)={R(T)R is the holomorphic function in σ(T)}. For T∈F,we prove that T is a stongly irreducible operator and V(A'(T))=N,K_0(A'(T))=Z,0,where N= {0, 1, 2, 3,...}, Z is integer group.