位置:成果数据库 > 期刊 > 期刊详情页
应用离散量子粒子群的复杂网络社区检测
  • ISSN号:1002-8331
  • 期刊名称:《计算机工程与应用》
  • 时间:0
  • 分类:TP393[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]河南大学计算机与信息工程学院,河南开封475004, [2]中原工学院计算机学院,郑州450007, [3]南阳师范学院计算机与信息技术学院,河南南阳473061
  • 相关基金:国家自然科学基金(the National Natural Science Foundation of China under Grant No.60873099);河南省重点科技攻关项目(No.102102210388);河南省教育厅自然科学研究项目(No.2010A520050,No.20098520023).
中文摘要:

针对模块度存在的解限制问题,分析了复杂网络社区检测中一种新的测度模块密度。采用二分策略,通过最大化模块密度,提出了基于离散量子粒子群优化进行复杂网络社区检测的算法。通过人工网络和现实网络的实验表明,算法具有较高的检测性能,并且在网络越来越模糊时,也能够检测出网络社区结构。

英文摘要:

To overcome the resolution limits drawback of modularity function, a new measure of modularity density in complex network community detection is studied.With bi-partitioning strategy,by maximizing the module density,an algorithm is proposed based on discrete quantum particle swarm optimization for complex network community detection.Through the artificial network and real network experiments it is showed that this algorithm has high detection performance.And when the network becomes increasingly blurred,it can detect the network community structure well.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程与应用》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华北计算技术研究所
  • 主编:怀进鹏
  • 地址:北京市海淀区北四环中路211号北京619信箱26分箱
  • 邮编:100083
  • 邮箱:ceaj@vip.163.com
  • 电话:
  • 国际标准刊号:ISSN:1002-8331
  • 国内统一刊号:ISSN:11-2127/TP
  • 邮发代号:82-605
  • 获奖情况:
  • 1. 2012年首批获得中国学术文献评价中心发布的 “...,2. 2001年获得新闻出版署“中国期刊方阵双效期刊”,3. 2008年首批入选国家科技部“中国精品科技期刊...,4.2003年-2011年连续获得工业和信息化部期刊最高...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:97887