位置:成果数据库 > 期刊 > 期刊详情页
用近红外光谱鉴别杨梅品种的研究
  • ISSN号:1001-9014
  • 期刊名称:《红外与毫米波学报》
  • 时间:0
  • 分类:S123[农业科学—农业基础科学] TH744.1[机械工程—光学工程;机械工程—仪器科学与技术;机械工程—精密仪器及机械]
  • 作者机构:[1]浙江大学生物系统工程与食品科学学院,浙江杭州310029
  • 相关基金:国家自然科学基金项目(30270773);教育部高等学校优秀青年教师教学科研奖励计划(02411)
中文摘要:

提出了一种用近红外光谱技术快速无损鉴别杨梅品种的新方法,首先用主成分分析法对典型的四个杨梅品种进行聚类分析,获取杨梅的近红外指纹图谱,再结合人工神经网络技术进行品种鉴别.主成分分析表明,以主成分1和2对样本的得分值做出的得分图,对不同种类杨梅具有较好的聚类作用,可以定性分析杨梅种类.利用主成分分析可以把原始波长变量压缩成能代表原始变量的少数相互正交的主成分,用这些新变量作为神经网络的输入,建立3层BP人工神经网络模型.四个杨梅品种共100个样本用来建立神经网络品种鉴别模型,对未知的20个样本进行预测,结果表明,品种识别准确率达到95%.说明综合主成分分析和人工神经网络的方法具有很好的分类和鉴别作用,为杨梅的品种鉴别提供了一种新方法.

英文摘要:

A new nondestructive method for discriminating varieties of waxberry by visible and near infrared spectroscopy (Vis/NIRS) was developed. First, the spectral data were analyzed by principal component analysis (PCA) for varieties clustering. Then diagnostic information was obtained from original spectra, these informations were used for pattern recognition based on ANN model. The score plot provided the reasonable clustering of the varieties of waxberry. Small quantities of principal components from PCA were used as inputs of a back propagation neural network (BPNN) with one hidden layer. 100 samples were selected randomly from four varieties, then they were used to build BPNN model. This model had been used to predict the varieties of 20 unknown samples. The recognition rate of 95% was achieved. This model is reliable and practicable. So this method could offer a new approach to the fast discriminating varieties of waxberry.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《红外与毫米波学报》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院上海技术物理研究所 中国光学学会
  • 主编:褚君浩
  • 地址:上海市玉田路500号
  • 邮编:200083
  • 邮箱:jimw@mail.sitp.ac.cn
  • 电话:021-25051553
  • 国际标准刊号:ISSN:1001-9014
  • 国内统一刊号:ISSN:31-1577/TN
  • 邮发代号:4-335
  • 获奖情况:
  • 1992、1996年获全国优秀学术期刊一等奖,1999年首届国家期刊奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,美国科学引文索引(扩展库),日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),瑞典开放获取期刊指南,中国北大核心期刊(2000版)
  • 被引量:8778