针对栅、源两种场板氮化镓(GaN)高电子迁移率晶体管(HEMTs),提出了一种包含非线性热网络的电热大信号模型。该模型基于电热耦合理论,采用有限元电热仿真方法,提取了两种场板器件的热阻和热容参数,建立了与功耗相关的非线性热网络,并嵌入到改进的Angelov经验模型中;分析了场板结构对微波小信号特性和大信号负载阻抗的影响等。在片测试及仿真结果表明,针对两种场板GaN HEMTs器件,在0~40 GHz频带内,该模型能较精确地预测S参数、输出功率(Pout)、增益(Gain)和功率附加效率(PAE)等参数;为成功地完成电路设计,提供了较为精确的电热大信号模型。
An electro-thermal large-signal model including a nonlinear thermal network for Gallium Nitride high electron mobility transistors (GaN HEMTs) with gate and source field plates is presented in this paper. This model including the nonlinear thermal network with respect to power dissipation is embedded in the improved Angelov model. Based on the electro-thermal principle, the thermal resistance and capacitance for the two field plates of the devices are identified by utilizing the electro-thermal finite element method (FEM) simulations. And the characteristics of small signal and load impedance for the two devices with different field plates have been analyzed in microwave frequency range. Accurate predictions of the quiescent currents, S-parameters up to 40 GHz, and large-signal harmonic performance for the devices with different gate peripheries have been achieved by the proposed model.