实现数据库中全部故事单元的相似度分析所面临的复杂性问题相当突出.提出了一种有效的方法来克服这些问题.首先,对限制相似关键帧识别速度的因素进行了研究,通过构建关联分析子数据库和精简局部关键点数量来提高分析速度.然后研究了层次化过滤方法,以提高相似关键帧识别效率.进一步研究了通过相似关键帧判断故事单元的直接关联关系和利用关联关系的传递性获得故事单元之间的间接关联关系的故事单元关联分析方法.最后,研究提出了利用相似关键帧信息的故事单元相似度计算方法.实验结果显示,该方法显著提高了匹配与关联分析的速度,并且具有较高的效率,计算所得故事单元相似度能够很好地贴近用户感官.
The quadratic complexity required for measuring the similarity of news stories makes it intractable in large-volume news videos.In this paper,an effective method is proposed to find a way to solve the problems.First,small partitions from the corpus and prune local keypoint are selected to accelerate matching speed.Then,a hierarchical approach for identifying near duplicate keyframes is proposed.Furthermore,this paper presents a method to identity correlation of stories based on near duplicate keyframes and transitivity of correlations.Finally,a method for calculating the similarity of news stories is presented based on near duplicate keyframes.Experimental results show that this approach greatly speeds up the matching speed and improves the matching accuracy.The similarity of stories is closer to users sensory.