研究一类带有临界指数项的非线性Choquard方程[-itu-Δu+V(x)u=(x-1*up)up-2u,(t,x)∈(R,R3),u(0,x)=u0(x)驻波解的轨道稳定性。0〈μ〈3p=2+(2-μ)/3。位势函数y(菇)在合适的假设下且ω充分大时,能够得到驻波解u=e^iwtφ的稳定性。
We studied the stability of standing wave solution for nonlinear Choquard equation [-itu-Δu+V(x)u=(x-1*up)up-2u,(t,x)∈(R,R3),u(0,x)=u0(x)where 0〈μ〈3p=2+(2-μ)/3.The stability of the standing wave u=e^iwtφis well derived under the suitable assumptions on the potential V(x) and appropriate frequency ω.