位置:成果数据库 > 期刊 > 期刊详情页
A Fuzzy Fault Diagnosis Method for Large Radar Based on Directed Graph Model
  • ISSN号:1671-4598
  • 期刊名称:《计算机测量与控制》
  • 时间:0
  • 分类:TP3-0[自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]School of Computer Science, Northwes-tern Polytechnical University, Xi'an 710072, China
  • 相关基金:the National Natural Science Foundation of China (No. 61371024), the Aviation Science Fund of China (No. 2013ZD53051) and the Industry Academy-Research Project of Aviation Industry Corporation of China (No. cxy2013XGD14), and the Space Support Technology Fund of China
中文摘要:

To meet the requirement of the real-time, accuracy and multi-target diagnosis of the large radar system,a new fuzzy fault diagnosis method based on directed graph model is proposed in this paper. In this method, the large complex system model is defined using the directed graph model firstly, in which the nodes observing the fault by the hierarchical reconstruction of the directed graph are located, then the fault dependency matrix between these nodes and the fault sources are established. And then, we utilize the sensors’ alarm probabilities under different situations to build the characteristic fault observation matrix in the fault observation space. Finally,the optimized corresponding diagnosis method using a fuzzy function, which describes the similarity between the actual observation vector and the fault’s characteristic vector, is designed. The experimental results demonstrate that the proposed method can achieve high diagnosis efficiency and accuracy. It can be widely used in the real radar system.

英文摘要:

To meet the requirement of the real-time, accuracy and multi-target diagnosis of the large radar system, a new fuzzy fault diagnosis method based on directed graph model is proposed in this paper. In this method, the large complex system model is defined using the directed graph model firstly, in which the nodes observing the fault by the hierarchical reconstruction of the directed graph are located, then the fault dependency matrix between these nodes and the fault sources are established. And then, we utilize the sensors' alarm probabilities under different situations to build the characteristic fault observation matrix in the fault observation space. Finally, the optimized corresponding diagnosis method using a fuzzy function, which describes the similarity between the actual observation vector and the fault's characteristic vector, is designed. The experimental results demonstrate that the proposed method can achieve high diagnosis efficiency and accuracy. It can be widely used in the real radar system.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机测量与控制》
  • 北大核心期刊(2011版)
  • 主管单位:中国航天科工集团公司
  • 主办单位:中国计算机自动测量与控制技术协会
  • 主编:苟永明
  • 地址:北京海淀区阜成路甲8号中国航天大厦405
  • 邮编:100048
  • 邮箱:ly@chinamca.com
  • 电话:010-68371578 68371556
  • 国际标准刊号:ISSN:1671-4598
  • 国内统一刊号:ISSN:11-4762/TP
  • 邮发代号:82-16
  • 获奖情况:
  • 中国学术期刊综合评价数据库来源期刊,中国科技论文统计源期刊,“国家期刊奖百种重点期刊”
  • 国内外数据库收录:
  • 美国剑桥科学文摘,英国科学文摘数据库,中国中国科技核心期刊,中国北大核心期刊(2008版),中国北大核心期刊(2011版)
  • 被引量:27924