采用双电偶热分析技术和SEM表征了Mg-6Al-xZn合金(简称AZ6x合金,x=0,2,4,6,质量分数,%)在砂型铸造过程中的凝固行为和显微组织;采用背散射电子衍射(EBSD)分析对合金的晶粒尺寸进行定量表征.利用Pandat热力学软件计算了合金的平衡截面相图、非平衡Scheil模型凝固过程,以及枝晶生长抑制因子(growthrestrictionfactor,或称为Q值).结果表明,在AZ6x合金的砂型铸造凝固过程中,AZ60合金中只有非平衡凝固的产Mg17Al12,而AZ62-AZ66合金的铸态组织中除了γ-Mg17Al12相,还出现了Ф-Mg21(Al,Zn)17相,并且随着zn含量的增加,γ-Mg17Al12相减少而Ф-Mg21(Al,Zn)17相增多.热力学计算结果表明,AZ60~AZ64合金中γ-Mg17Al12相和Ф-Mg21(Al,Zn)17相在一定温度下能够完全固溶到a-Mg中,而AZ66合金中的Ф-Mg21(Al,Zn)17相在任何温度下都不可能完全固溶.研究结果还表明,Zn含量高的合金具有高的Q值、小的晶粒尺寸及低的枝晶相干点固相分数;并讨论了p值、晶粒尺寸与矿。的关系.
The solidification behavior and microstructure evolution of sand cast Mg-6Al-xZn alloy (named as AZ6x alloys, x=0, 2, 4, 6, mass fraction, %) were characterized by two-thermocouple thermal analysis technology and SEM. The grain sizes of the alloys were quantitatively determined by EBSD technology. Thermodynamic cal- culations were applied in Pandat soRware for phase diagram calculation, Scheil model solidification simulation and growth restriction factor values (GRF or Q values). The results show that solidification of AZ6x alloys follows non-equilibrium solidification paths. Besides the γ-Mg17Al12 phase, which is the only secondary phase in AZ60 al- loy, another Ф-Mg21(Al,Zn)17 phase appears in the as-cast microstructure of AZ62 to AZ66 alloys. With the in- crease of the Zn content, the amount of γ-Mg17Al12 phase decreases and while increase the amount of Ф-Mg21(Al,Zn)17 Tphase. Calculated equilibrium phase diagram shows that in the AZ60-AZ64 alloys both γ-Mg17Al12 phase and Ф-Mg21(Al,Zn)17 phase can be dissolved into a-Mg under proper heat treatment conditions. However, Ф-Mg21(Al,Zn)17 phase in AZ66 alloy can not be completely dissolved into a-Mg for any temperature. The results also indicate that higher Zn content alloys have higher Q values and smaller grain size, and lower solid fraction at dendrite co- herency point fsDCP). The relationship of Q values, grain size and fsDCP has been also discussed.