位置:成果数据库 > 期刊 > 期刊详情页
结合主成分分析和局部导数模式的人脸识别方法
  • ISSN号:1004-373X
  • 期刊名称:《现代电子技术》
  • 时间:0
  • 分类:TN919.34[电子电信—通信与信息系统;电子电信—信息与通信工程] TP317.4[自动化与计算机技术—计算机软件与理论;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]现代教学技术教育部重点实验室,陕西西安710062, [2]陕西师范大学计算机科学学院,陕西西安710062
  • 相关基金:国家自然科学基金资助项目(61371201)
中文摘要:

针对基于局部模式的人脸识别方法特征维数高、计算复杂度高、识别时间长的问题,提出一种结合主成分分析和局部导数模式的人脸识别方法,并针对如何解决光照、人脸表情等方面的问题提出了改进的编码方法。该方法首先将人脸图像分成很多小的区域,然后在每一个小区域中用改进的编码方法进行编码,并建立该区域的局部导数直方图,然后采用主成分分析法对所有直方图向量进行降维得到特征向量,最后利用最近邻分类器计算相似度。实验表明,这里提出的结合主成分分析和局部导数模式方法无论在识别率还是在运算速度上都优于传统的识别算法。

英文摘要:

In order to solve the problems of high feature dimension, high computational complexity and long recognition time caused by the face recognition method based on local pattern, a face recognition method combining principal component analysis and local derivative model is presented in this paper. The improved coding method is introduced to solve the problems of illumination, facial expression and so on. The face image is divided into many small regions, and then each small area is coded by the improved coding method and a LDP histogram of the region is created. The dimension of histogram vectors are reduced by using principal component analysis. Finally, the nearest neighbor classifier is used to calculate the similarity. Experimental re- suits show that the presented method is superior to the traditional method in the recognition rate and the speed.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《现代电子技术》
  • 北大核心期刊(2014版)
  • 主管单位:陕西省信息产业厅
  • 主办单位:陕西电子杂志社 陕西省电子技术研究所
  • 主编:张郁(执行)
  • 地址:西安市金花北路176号陕西省电子技术研究所科研生产大楼六层
  • 邮编:710032
  • 邮箱:met@xddz.com.cn
  • 电话:029-93228979
  • 国际标准刊号:ISSN:1004-373X
  • 国内统一刊号:ISSN:61-1224/TN
  • 邮发代号:52-126
  • 获奖情况:
  • 中国科技核心期刊
  • 国内外数据库收录:
  • 波兰哥白尼索引,中国中国科技核心期刊,中国北大核心期刊(2014版)
  • 被引量:37245