位置:成果数据库 > 期刊 > 期刊详情页
基于静态多特征融合的恶意软件分类方法
  • 时间:0
  • 分类:TP309.5[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]北京邮电大学网络空间安全学院天地互联与融合北京市重点实验室,北京100876, [2]北京邮电大学国际学院,北京100876, [3]中国信息安全测评中心,北京100085, [4]四川大学计算机学院,四川成都610015
  • 相关基金:国家自然科学基金资助项目(No.U1536119,No.61401038)
中文摘要:

近年来,恶意软件呈现出爆发式增长势头,新型恶意样本携带变异性和多态性,通过多态、加壳、混淆等方式规避传统恶意代码检测方法。基于大规模恶意样本,设计了一种安全、高效的恶意软件分类的方法,通过提取可执行文件字节视图、汇编视图、PE视图3个方面的静态特征,并利用特征融合和分类器集成学习2种方式,提高模型的泛化能力,实现了特征与分类器之间的互补,实验证明,在样本上取得了稳定的F1-score(93.56%)。

英文摘要:

In recent years, the amount of the malwares has tended to rise explosively. New malicious samples emerge as variability and polymorphism. By means of polymorphism, shelling and confusion, traditional ways of detecting can be avoided. On the basis of massive malicious samples, a safe and efficient method was designed to classify the malwares. Extracting three static features including file byte features, assembly features and PE features, as well as improving generalization of the model through feature fusion and ensemble learning, which realized the complementarity between the features and the classifier. The experiments show that the sample achieve a stable Fl-socre (93.56%).

同期刊论文项目
同项目期刊论文