位置:成果数据库 > 期刊 > 期刊详情页
信息熵方法及在中文问题分类中的应用
  • ISSN号:1002-8331
  • 期刊名称:《计算机工程与应用》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]山西职工医学院信息中心,太原030012, [2]太原理工大学计算机科学与技术学院,太原030024
  • 相关基金:国家自然科学基金(No.60970059); 山西省科技攻关项目(No.20110313019); 山西省卫生厅科技攻关计划项目(No.2011073)
中文摘要:

针对中文问题分类方法中布尔模型提取特征信息损失较大的问题,提出了一种新的特征权重计算方法。在提取问题特征时,通过把信息熵算法和医院本体概念模型结合在一起,进行问题的特征模型计算,在此基础上使用支持向量机方法进行中文问题分类。在城域医院问答系统的中文问题集上进行实验,证明了该方法的有效性,大类准确率及小类准确率分别达到89.0%和87.1%,取得了较好的效果。

英文摘要:

Aimed at the problem of greater information loss to use Boolean model to extract the feature during Chinese question classification, a new method which calculated feature weight is proposed. When the question feature is extracted, the model of question feature weight is calculated by a combination of information entropy algorithm and hospital ontology concept model. On that basis, the method of Support Vector Machine is used to classify Chinese questions. The classification method is tested on Chinese question set of the city-domain hospital question answering system. This method is proved to be effective and a better result is achieved. Results show that the accuracy of coarse class and fine class achieves 89.0% and 87.1%.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程与应用》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华北计算技术研究所
  • 主编:怀进鹏
  • 地址:北京市海淀区北四环中路211号北京619信箱26分箱
  • 邮编:100083
  • 邮箱:ceaj@vip.163.com
  • 电话:
  • 国际标准刊号:ISSN:1002-8331
  • 国内统一刊号:ISSN:11-2127/TP
  • 邮发代号:82-605
  • 获奖情况:
  • 1. 2012年首批获得中国学术文献评价中心发布的 “...,2. 2001年获得新闻出版署“中国期刊方阵双效期刊”,3. 2008年首批入选国家科技部“中国精品科技期刊...,4.2003年-2011年连续获得工业和信息化部期刊最高...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:97887