The development of nanobiology requires a fundamental understanding of the interaction features between light and cells as well as cells containing nanoparticles. In this study, the generalized multiparticle Mie (GMM) theory was employed to calculate the scattering properties of cells under refractive index matching conditions. The angular distribution of scattered light is statistically averaged to obtain a good fit for the experimental results. Based on a simplified cell model, the variabilities between the scattered light pattern of normal cells and that of cancerous cells were examined. The results indicate that the small angle scattering is sensitive to the organelle distribution, which could be applied in the diagnostics of cancerous cells. Finally, the effects of cellular uptake of nanoparticles on the scattering pattern was also investigated.
The development of nanobiology requires a fundamental understanding of the interaction features between light and cells as well as cells containing nanoparticles. In this study, the generalized multiparticle Mie (GMM) theory was employed to calculate the scattering properties of cells under refractive index matching conditions. The angular distribution of scattered light is statistically averaged to obtain a good fit for the experimental results. Based on a simplified cell model, the variabilities between the scattered light pattern of normal cells and that of cancerous cells were examined. The results indicate that the small angle scattering is sensitive to the organelle distribution, which could be applied in the diagnostics of cancerous cells. Finally, the effects of cellular uptake of nanoparticles on the scattering pattern was also investigated.