针对存在执行机构安装偏差和外干扰的航天器姿态控制问题,提出一类基于反步法的自适应滑模控制策略,该方法在实现姿态控制快速性和高精度的同时,能有效地避免因执行机构安装偏差引起的不确定性所导致的控制奇异现象。在此基础上,考虑到执行机构冗余特性,进一步提出一种基于能量最优约束二次规划的动态控制分配算法来完成期望指令到执行机构的指令分配,克服了传统伪逆法难以考虑的控制力矩位置和速度约束,减少了系统功耗,实现了分配后控制力矩的平稳性和能量最优。最后,将提出的控制方案应用于某型轮控刚体航天器的姿态稳定任务中,仿真结果验证了提出方法的可行性、有效性。
A backstepping design based adaptive control algorithm is developed for attitude stabilization of a rigid spacecraft,in which the uncertainties of actuators misalignment and external disturbances are considered.Lyapunov stability analysis shows that the attitude and angular velocity converge to zero,and an novel updating law is employed to implement attitude control law as well,in which the possible singularity problem caused by the estimation of uncertainties due to actuator misalignment is avoided effectively.In addition,a dynamic control allocation is investigated to distribute the desired control command among redundant actuators.This method extends the conventional quadratic-programming control allocation by penalizing the previous step before sampling intervals and minimize the energy consume.Finally,a numerical simulation example for a spacecraft attitude control system is included to illustrate effectiveness and feasibility of the proposed control scheme.