为研究风力发电机高塔系统抗风、抗震等动力问题,基于有限元法对某1.2MW风力发电机进行了模态分析,研究了各阶模态振型特性,并通过改变塔架高度、厚度以及叶片长度等尺寸变量,讨论各尺寸变量对风力发电机高塔系统自振特性的影响。对多组数值模拟工况结果进行函数拟合,得到置信度较高的拟合公式,确定了各尺寸变量与风机高塔系统自振频率的函数关系。研究结果可为风力发电机高塔系统结构动力分析提供理论依据,并对工程实践有一定借鉴意义。
In order to study the dynamic problems of wind turbine tower system, such as wind-resistant and anti-seismic, modal analysis of a 1.2 MW wind turbine is carried out based on finite element numerical simulation to research the vibration characteristics of each mode. By changing dimension variables, such as blade length, the height and thickness of tower, the influence of variables on the natural vibration characteristics of wind turbine system is also studied. Through the function fitting of many groups of numerical simulation results for conditions, the fitting formula with high confidence is derived, which ascertains the function relation between dimension variables and natural vibration frequency of wind turbine system,Thus a theoretical basis for structure dynamic analysis of wind turbine system is provided to project practice for references.