位置:成果数据库 > 期刊 > 期刊详情页
基于关联特征的贝叶斯Android恶意程序检测技术
  • ISSN号:1000-386X
  • 期刊名称:《计算机应用与软件》
  • 时间:0
  • 分类:TP3[自动化与计算机技术—计算机科学与技术]
  • 作者机构:合肥工业大学计算机与信息学院,安徽合肥230009
  • 相关基金:国家自然科学基金项目(61273237)
中文摘要:

Android应用恶意性和它所申请的权限关系密切,针对目前恶意程序检测技术检出率不高,存在误报,缺乏对未知恶意程序检测等不足,为实现对Android平台恶意程序进行有效检测,提出了一种基于关联权限特征的静态检测方法。首先对获取的应用权限特征进行预处理,通过频繁模式挖掘算法构造关联特征集,然后采用冗余关联特征剔除算法对冗余关联特征进行精简,最后通过计算互信息来进行特征筛选,获得最具分类能力的独立特征空间,利用贝叶斯分类算法进行恶意程序的检测。实验结果证明,在贝叶斯分类之前对特征进行处理具有较强的有效性和可靠性,能够使Android恶意程序检出率稳定在92.1%,误报率为8.3%,检测准确率为93.7%。

英文摘要:

There is a close relationship between the Android malware and the application's permissions,in view of the detection rate is not high of current detection technology,the existence of false positives,and lack of detection of unknown malicious. A static detection method based on the characteristics of associated permissions is proposed to realize the effective detection of Android malware. First of all, the characteristics of the application permissions are preprocessed,and the permissions association dataset is constructed by the frequent pattern mining algorithm,then the redundancy feature selection algorithm is designed to simplify the redundancy,finally the feature selection is carried out by Mutual information,independent feature spaces with the most ability to classify. The experimental results show that dealing with features has a better validity and reliability before Bayesian classification,the detection rate can be stable in92. 1%,the false positive rate is 8. 3%,the detection accuracy rate is 93. 7%.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用与软件》
  • 北大核心期刊(2011版)
  • 主管单位:上海科学院
  • 主办单位:上海市计算技术研究所 上海计算机软件技术开发中心
  • 主编:朱三元
  • 地址:上海市愚园路546号
  • 邮编:200040
  • 邮箱:cas@sict.stc.sh.cn
  • 电话:021-62254715 62520070-505
  • 国际标准刊号:ISSN:1000-386X
  • 国内统一刊号:ISSN:31-1260/TP
  • 邮发代号:4-379
  • 获奖情况:
  • 全国计算机类中文核心期刊
  • 国内外数据库收录:
  • 波兰哥白尼索引,美国剑桥科学文摘,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2011版),中国北大核心期刊(2000版)
  • 被引量:27463