研究了一类潜伏类和移出类均具有传染力的SEIR传染病模型,得到了疾病流行与否的阈值:基本再生数R0.运用Liapunov函数方法,证明了当R0<1时,无病平衡点E0全局渐近稳定,疾病最终消失;利用Hurwitz判据定理,证明了当R0>1时,E0不稳定,地方病平衡点E*局部渐近稳定;当因病死亡率和剔除率为零时,地方病平衡点E*全局渐近稳定,疾病持续存在.最后,进行了计算机数值模拟来进一步验证理论结果的正确性.