位置:成果数据库 > 期刊 > 期刊详情页
Rapamycin Sensitizes Glucocorticoid Resistant Acute Lymphoblastic Leukemia CEM-C1 Cells to Dexamethasone Induced Apoptosis through both mTOR Suppression and Up-Regulation and Activation of Glucocorticoid Receptor
  • ISSN号:2095-428X
  • 期刊名称:《中华实用儿科临床杂志》
  • 时间:0
  • 分类:R3[医药卫生—基础医学]
  • 作者机构:[1]Department of Pediatric Hematology/Oncology,West China Second University Hospital,Sichuan University
  • 相关基金:supported by the research funds from the University Program for Changjiang Scholars and Innovative Research Team(No.IRT0935); the National Natural Science Fund Project(No.30973237); grants from the Department of Science and Technology of Sichuan Province(No.2008JY0029-1,No.07FG002-024,and No.2010JY0004)
中文摘要:

Objective To explore the role of glucocorticoid (GC) receptor (GR) in rapamycin's reversion of GC resistance in humanGC-resistant T-acute lymphoblastic leukemia (ALL) CEM-C1 cells. Methods CEM-C1 cells were cultured in vitro and treated with rapamycin at different concentrations with or without 1 μmol/L dexamethasone (Dex). 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) test was performed to assess cell proliferation. The cell cycle and cell apoptosis were analyzed by flow cytometry. The expression of GRα mRNA was determined by real-time quantitative RT-PCR. The expression of GR, p-70S6K, Mcl-1, and Bim proteins was detected by Western blot. Results When incubated with rapamycin at different concentrations, CEM-C1 cells showed significant growth inhibition in a time- and concentration-dependent manner. The growth inhibition was synergistically increased when CEM-C1 cells were treated with rapamycin plus 1 μmol/L Dex. CEM-C1 cells treated with rapamycin alone showed no apparent apoptosis, and were arrested at G0/G1 phase. After the treatment with Dex plus rapamycin, CEM-C1 cells demonstrated apparent apoptosis and increased the cell cycle arrested at G0/G1 phase. Rapamycin combined with Dex up-regulated GRα, phosphorylated GR(p-GR), and pro-apoptotic protein Bim-EL in CEM-C1 cells, but inhibited the expression of p-p70S6K, a downstream target protein ofmTOR (mammalian target of rapamycin). Conclusion After the treatment with rapamycin plus Dex, Dex resistant CEM-C1 cells induce growth inhibition and apoptosis. The underlying mechanism may involve inhibition of the mTOR signaling pathway and also be associated with up-regulation of GR expression and activation of GC-GR signaling pathway.

英文摘要:

Objective To explore the role of glucocorticoid (GC) receptor (GR) in rapamycin's reversion of GC resistance in humanGC-resistant T-acute lymphoblastic leukemia (ALL) CEM-C1 cells. Methods CEM-C1 cells were cultured in vitro and treated with rapamycin at different concentrations with or without 1 μmol/L dexamethasone (Dex). 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) test was performed to assess cell proliferation. The cell cycle and cell apoptosis were analyzed by flow cytometry. The expression of GRα mRNA was determined by real-time quantitative RT-PCR. The expression of GR, p-70S6K, Mcl-1, and Bim proteins was detected by Western blot. Results When incubated with rapamycin at different concentrations, CEM-C1 cells showed significant growth inhibition in a time- and concentration-dependent manner. The growth inhibition was synergistically increased when CEM-C1 cells were treated with rapamycin plus 1 μmol/L Dex. CEM-C1 cells treated with rapamycin alone showed no apparent apoptosis, and were arrested at G0/G1 phase. After the treatment with Dex plus rapamycin, CEM-C1 cells demonstrated apparent apoptosis and increased the cell cycle arrested at G0/G1 phase. Rapamycin combined with Dex up-regulated GRα, phosphorylated GR(p-GR), and pro-apoptotic protein Bim-EL in CEM-C1 cells, but inhibited the expression of p-p70S6K, a downstream target protein ofmTOR (mammalian target of rapamycin). Conclusion After the treatment with rapamycin plus Dex, Dex resistant CEM-C1 cells induce growth inhibition and apoptosis. The underlying mechanism may involve inhibition of the mTOR signaling pathway and also be associated with up-regulation of GR expression and activation of GC-GR signaling pathway.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《中华实用儿科临床杂志》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中华医学会
  • 主编:郭学鹏
  • 地址:河南省新乡市金穗大道东段新乡医学院
  • 邮编:453003
  • 邮箱:syqk@xxmc.edu.cn
  • 电话:0373-3029144 3831456
  • 国际标准刊号:ISSN:2095-428X
  • 国内统一刊号:ISSN:10-1070/R
  • 邮发代号:36-102
  • 获奖情况:
  • 中国科技论文统计源期刊,临床医学类核心期刊,河南省优秀科技期刊二等奖
  • 国内外数据库收录:
  • 波兰哥白尼索引,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:5061