该文证明: 和如下耦合色散系统相联系的初值问题的充分光滑的解(u,v)=(u(x,t),v(x,t)), 如果在两个时刻有半线支集那么它们全为零. {δt u+δ3x u+δx(up vp+1)=0, δt v+δ3x v+δx(up+1vp)=0, x ∈R, t ≥ 0
It is proved that, if a sufficiently smooth solution $(u,v)=(u(x,t),v(x,t))$ to the initial value problem associated with the dispersive coupled system {δt u+δ3x u+δx(up vp+1)=0, δt v+δ3x v+δx(up+1vp)=0, x ∈R, t ≥ 0 is supported on a half line at two different instants of time then u ≡ 0, v ≡ 0.