液体蒸发驱动的颗粒自组装现象在许多的工业技术中有重要应用。本文利用显微镜观测含有颗粒物质的液滴变干后留在固体表面的颗粒形成的环状沉积图案。采用微米粒径的SiO2小球水溶液液滴蒸发变干模拟咖啡环的形成过程,结果发现液滴蒸发过程中接触线的钉扎是环状沉积的必要条件。在液滴蒸发过程中颗粒随着补偿流不断的向液滴边缘移动,聚集在接触线处形成环。液滴蒸发变干后残留在液滴内部的颗粒数随颗粒质量分数的增加而增加,可以达到单层的颗粒排列。而玻璃衬底上的颗粒环在颗粒质量分数很小时,形成单层排列,且一排一排地生长。蒸发过程中颗粒环由于液滴边缘的尺寸限制向液滴中心缓慢移动。这会导致液滴中不同大小颗粒的分离。
Deposition of colloidal particles in a drying droplet is important in many scientific researches and technological applications. In this work, the ring deposition of drying droplets on a solid substrate is investigated experimentally at a microscopic level. A ring deposition is formed at the contact line as the water solution droplet containing SiO2 particles is drying, just like the formation of coffee ring. Contact line pinning is crucial to the ring deposition formation. There will be a replenish flow in the droplet towards the edge, and the particles are driven to the contact line, deposited on the substrate. As the particle mass fraction is large, the particles which are left inside the spot, when the droplet dries out, may form a single particle layer, packing in order. The contact angle of the droplet on glass substrate is very small, the SiO2 particles will gather at the rim of the droplet, which initially form a chain along the contact line. As more particles come to the rim, they are deposited in a line by line way to form a 2D close packing. Since the contact angle decreases with evaporation when the contact line is pinned, a capillary force between liquid surface and particles arises once the height of droplet surface near the contact line is lower than that of the particle, pushing the particles to move inward. The effect on the larger particles is more pronounced-it even leads to a separation of the particles, with the smaller ones at the outer side.