本文讨论积分方程组(?)解的性质,其中G_α是α阶贝塞尔位势核,0≤β〈α(n-α+β)/n,1/(q+1)+1/(r+1)〉(n-α+β)/n,1/(r+1)+1/(p+1)〉(n-α+β)/n.我们用积分形式的移动平面法证明上述积分方程组的正解是径向对称且单调的.
In this paper,we consider properties of solutions for a class of integral systemsin the following:u(x) =∫Rn (Gα(x-y)v(y)q)/(|y|β)dy,v(x) =∫Rn(Gα(x-y)w(y)r)/(|y|β)dy,w(x) =∫Rn (Gα(x-y)u(y)p)/(|y|β)dy,x∈Rn,where Gαis the Bessel potential of orderα,0≤β〈α〈n,1〈p,q,r〈(n-β)/β,and 1/(p+1)+1/(q+1)〉(n-α+β)/n,1/(q+1)+1/(r+1)〉(n-α+β)/n,1/(r+1)+1/(p+1)〉(n-α+β)/n.We prove that the positive solutions are symmetry and nionotonicity by using the movingplane method in integral form.