微粒群算法具有搜索效率高,收敛速度快的特点,可应用于基于目标搜索任务的群体系统。人工势场法可用于移动机器人的避障导航,提出一种在环境未知情况下基于机器人多传感器结构的人工势场法MSAPF,和一种具有群机器人系统特征的SRPSO算法,将二者相结合,应用于群机器人系统的目标搜索任务,在搜索目标的同时实现避障导航路径规划,通过对多组不同数量机器人的仿真实验验证了此方法的有效性。
Particle Swarm Optimization algorithm has high searching efficiency and constringency speed,and can be used for the target-searching swarm intelligence system.The artificial potential field (APF) is an effective local path planning method for the mobile robot.The MSAPF (multi-sensor-based APF),integrating with the SRPSO (Swarm-Robot PSO) algorithm was proposed,used for realizing the path planning of swarm robot system while searching the target.The efficiency has been proved by the simulation experiments with different individual quantity of swarm robot.