本文研究下列分数阶微分方程在奇异和非奇异的情况下的边值问题{D_0~α+u(t)+f(t,u(t))=0,t∈(0,1),3〈α≤4,u(0)=0,D_(0+)~(α-1)u(0)=0,D_(0+)~(α-2)u(0)=0,D_(0+)~(a-3)u(1)=0.通过计算,得到分数阶格林公式.利用半序集上的不动点定理和u_0凸算子不动点定理,得到上述问题存在唯一正解.
In this paper,we consider the following singular and nonsingular fractional differential equation boundary value problem{D_0~α+u(t)+f(t,u(t))=0,t∈(0,1),3α≤4,u(0)=0,D_(0+)~(α-1)u(0)=0,D_(0+)~(α-2)u(0)=0,D_(0+)~(a-3)u(1)=0.By calculating,we obtain the fractional Green function.By using a fixed point theorem in partially ordered sets and a fixed point theory for the u_0 concave operator,some results on the existence and uniqueness of positive solutions can be established.