考虑了一类变系数的具有强迫项的二阶中立型微分方程(x(t)+R(t)x(h(t)))″+P(t)x(g_1(t))-Q(t)x(g_2(t))=f(t)非振动解的存在性问题.通过Banach压缩映像原理,分别得到了方程存在满足liminf t→+∞|x(t)|〉0的非振动解x(t)的充分条件与必要条件,推广了一阶变系数方程的相应结果.
In this paper,the nonoscillatory solution of a class of variable coefficient secondorder neutral differential equation with forced term(x(t) + R(t)x(h(t)))" + P(t)x(g_1(t))- Q(t)x(g_2(t)) = f(t),t ≥ t_0is considered.By using Banach contraction principle,sufficient condition and necessary condition for existence of nonoscillatory solution x(t) satisfying liminf t→+∞ |x(t)|〉0 are obtained respectively,which generalized the corresponding results for first-order equation with variable coefficient.