位置:成果数据库 > 期刊 > 期刊详情页
基于核慢特征回归与互信息的常压塔软测量建模
  • ISSN号:0438-1157
  • 期刊名称:《化工学报》
  • 时间:0
  • 分类:TP274[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]华东理工大学化工过程先进控制与优化技术教育部重点实验室,上海200237, [2]中国石油天然气股份有限公司独山子石化研究院,新疆克拉玛依833699
  • 相关基金:国家自然科学基金项目(21676086,21406064).
中文摘要:

针对工业过程的非线性及动态特性,提出了一种新的慢特征回归软测量方法。该方法首先通过添加时延数据构造动态数据集,利用互信息最大化准则筛选变量从而减少信息冗余的影响。同时该方法在慢特征分析的基础上引入核函数扩展,加强模型处理非线性数据的能力,并将获得的核慢特征用于回归建模。核慢特征分析通过分析样本的变化,提取具有缓慢变化特征的成分,可以有效地刻画工业过程的变化趋势,提升回归模型精度。最后该方法的有效性在常压塔常顶油干点与常一线初馏点的软测量模型中得到了验证。

英文摘要:

A novel soft sensor method based on slow fe.ature regression (SFR) was proposed for industrial process with nonlinear and dynamic characteristics. First, a dynamic dataset was built by adding time-delay data and information redundancy was reduced by selecting variables according to mutual information maximization criteria. Then, kernel function was introduced into slow feature analysis (SFA) to improve capability of processing nonlinear data and the kernel slow features were used for regression. Through analysis of sample variation, kernel slow feature analysis (KSFA) could extract components with slowly varying dynamics, characterize trend of industrial process effectively, and improve precision of regression modelling. Finally, effectiveness and feasibility of the proposed method were verified by soft sensor model of constant top oil dry point and constant first line dropping point in atmospheric tower.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《化工学报》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国化工学会 化学工业出版社
  • 主编:李静海
  • 地址:北京市东城区青年湖南街13号
  • 邮编:100011
  • 邮箱:hgxb126@126.com
  • 电话:010-64519485
  • 国际标准刊号:ISSN:0438-1157
  • 国内统一刊号:ISSN:11-1946/TQ
  • 邮发代号:2-370
  • 获奖情况:
  • 中国科协优秀期刊二等奖,化工部科技进步二等奖,北京全优期刊奖,中国期刊方阵“双效”期刊,第三届中国出版政府奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:35185