位置:成果数据库 > 期刊 > 期刊详情页
Structural reliability analysis using a hybrid HDMR-ANN method
  • ISSN号:1000-2758
  • 期刊名称:《西北工业大学学报》
  • 时间:0
  • 分类:TD[矿业工程]
  • 作者机构:[1]Key Laboratory of Fundamental Science for National Defense-Advanced Design Technology of Flight Vehicles,Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
  • 相关基金:Project(U1533109) supported by the National Natural Science Foundation, China; Project supported by the Priority Academic ProgramDevelopment of Jiangsu Higher Education Institutions, China
中文摘要:

A new hybrid method is proposed to estimate the failure probability of a structure subject to random parameters. The high dimensional model representation (HDMR) combined with artificial neural network (ANN) is used to approximate implicit limit state functions in structural reliability analysis. HDMR facilitates the lower dimensional approximation of the original limit states function.For evaluating the failure probability, a first-order HDMR approximation is constructed by deploying sampling points along each random variable axis and hence obtaining the structural responses. To reduce the computational effort of the evaluation of limit state function, an ANN surrogate is trained based on the sampling points from HDMR. The component of the approximated function in HDMR can be regarded as the input of the ANN and the response of limit state function can be regarded as the target for training an ANN surrogate. This trained ANN surrogate is used to obtain structural outputs instead of directly calling the numerical model of a structure. After generating the ANN surrogate, Monte Carlo simulation (MCS) is performed to obtain the failure probability, based on the trained ANN surrogate. Three numerical examples are used to illustrate the accuracy and efficiency of the proposed method.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《西北工业大学学报》
  • 中国科技核心期刊
  • 主管单位:中华人民共和国工业和信息化部
  • 主办单位:西北工业大学
  • 主编:胡沛泉
  • 地址:西安市友谊西路127号(西工大校园158号信箱)
  • 邮编:710072
  • 邮箱:xuebao@mwpu.edu.cn
  • 电话:029-88495455
  • 国际标准刊号:ISSN:1000-2758
  • 国内统一刊号:ISSN:61-1070/T
  • 邮发代号:52-182
  • 获奖情况:
  • 国内外数据库收录:
  • 美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:10173