研究了伪辛空间F2ν+δq的(m,2s+τ,s,1)型子空间中一类子空间的填充排列,即对于符合条件的整数m,r,s,τ,δ,ν,d,q,从给定的(m,2s+τ,s,1)型子空间中找到d个(m-1,2(s-1)+τ,s-1,1)型子空间H1,…,Hd,使包含在它们中的(r,2(s-1)+τ,s-1,1)型子空间个数达到最大,而每个(r,2(s-1)+τ,s-1,1)型子空间至少包含在某个Hi中.
In this paper,we study the following packing arrangement of subspaces in pseudo-symplectic space. For eligible integers m, r, s, v, d, q, and a subspace C of type (m, 2s+ r, s, 1) of pseudo-symplectic space F q 2v+δ , we arrange d subspaces H1 ,…, Hd of type (m- 1,2 (s- 1), s- 1,1 ) of C to maximize the num-ber of the subspaces of type (r, 2 (s-1), s-1,1) each of which belongs to at least one of the Hi (1≤i≤d).