令X为实或复域F上的Banach空间,A为X上的标准算子代数,I是A的单位元.设Φ:A→A是可加映射.本文证明了,如果有正整数m,n,使得Φ满足条件Φ(A^(m+n+1))-A^mΦ(A)A^n∈FI对任意A成立,则存在λ∈F,使得对所有的A∈A,都有Φ(A)=λA.同样的结果对于自伴算子空间上的可加映射也成立.此外,本文还给出了中心素代数上满足条件(m+n)Φ(AB)-mAΦ(B)-nΦ(A)B∈FI的可加映射Φ的完全刻画.
Let X be a Banach space over the real or complex field F, let A be a standard operator algebra on X with unit I. Suppose that Ф : A → A is an additive map and m, n are positive integers. It is proved that, if Ф satisfies Ф(A^(m+n+1)) - A^mФ(A)A^n ∈ FI for all A ∈ A, then there exists some λ ∈ F such that Ф(A) = λA for all A ∈A. The same result is true for additive maps on the space of all selfadjoint operators. In addition, a complete characterization of maps Ф on centrally prime algebras satisfying (m + n)Ф(AB) - mAФ(B) - nФ(A)B ∈ FI is obtained.