本文在一般的序Banach空间中研究了一类二阶脉冲积分-微分方程的初值问题,在没有任何紧型条件而且只有一个上解或者下解的假设下,我们得到了方程解的存在唯一性及解的迭代逼近与误差估计,本文的结果推广和改进了某些已知结果。
We investigate the initial value problem for the second order impulsive integro-differential equation in Banach space. Without any compactness type condition, we get the existence and uniqueness of solution for the equation, the explicitly iterative approximation of the solution and the error estimate of iterative sequence. The obtained results improve and extend many known results.