传统模糊神经网络在时间序列预测方面已经有比较成功的应用,但在预测前,是否需要预先进行趋势和季节剔除,以及如何进行剔除,还缺乏统一认识。利用小波分解将非线性时间序列中的趋势项、周期项和随机项分离出来,然后采用模糊神经网络进行集成预测,解决了传统差分方法等剔除趋势和季节因素后,进行模糊神经网络预测效果差的问题,同时又充分利用了非线性时间序列中的趋势项、周期项和随机项信息。为了检验小波-模糊神经网络的非线性时间序列预测效果,对我国铁路客运量进行预测实验。实验结果表明,利用小波分解进行趋势项、周期项和随机项的分离,并进行模糊神经网络的集成预测,比传统的模糊神经网络预测有着更好的精度,从而验证了模型的有效性。