设{Xn,n≥1}是独立同分布随机变量序列,Un是以对称函数h(x,y)为核函数的U-统计量.记Un=2/n(n-1)∑1≤i≤j≤n h(Xi,Xj),h1(x)=Eh(x1,X2).在一定条件下,建立了∞∑n=2(logn)^δ-1EUn^2I{|Un|}≥n^-1/2 logn }及∞∑n=3(log logn)^δ--1/lognEUn^2I{|Un|}≥n^-1/2 n=2√loglonnε}的精确收敛速度.
Let{Xn,n≥1} be based on the symmetric kernel a sequence of i.i.d, random function h(x, y). Set Un =2/n(n-1)∑1≤i≤j≤n h(Xi,Xj),h1(x)=Eh(x1,X2)Under some proper conditions, the exact moment convergence rates of ∞∑n=2(logn)^δ-1EUn^2I{|Un|}≥n^-1/2 logn }and ∞∑n=3(log logn)^δ-1/lognEUn^2I{|Un|}≥n^-1/2 n=2√loglonnε}are showed.