在全空间 Rn 中考虑带有 Hardy 位势的分数阶偏微分方程( P ):(-Δ)α2 u(x)=1xγup (x) x ∈ Rn ,与对应的积分方程 u( x )= c∫up (y)| x - y |n-α| y |γdy的x ∈ Rn Rn等价性,其中0<γ<α<2#n,c是常数。采用一种新颖且直接的方法来证明。一旦等价性建立,则对积分方程正解的性质都可以应用到分数阶偏微分方程上面。
We consider the equivalence between the fractional partial differential equation (P) with Hardy term in Rn : (- Δ) α2 u(x) = 1xγup (x) x ∈ Rn ,and the correspondingintegral equation u(x)=U(x) ≥ 0 x ∈ Rn c∫up (y)| x - y | n-α | y |γdy ,where 0 〈 γ〈 α〈 2 #n and c is a constant .A new and direct approach is Rn employed to prove the equivalence . Once the equivalence is established ,all results of the positive solutions to an integral equation can be applied to the fractional partical difference equation (PDE) .