位置:成果数据库 > 期刊 > 期刊详情页
QPSO算法与PSO算法求解二维热传导反问题
  • ISSN号:1000-7024
  • 期刊名称:《计算机工程与设计》
  • 时间:0
  • 分类:TP391.9[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]江南大学信息工程学院,江苏无锡214122
  • 相关基金:国家自然科学基金项目(60474030).
中文摘要:

热传导反问题在国内研究起步较晚,研究方法有很多,但通常方法很难较好地接近全局最优。在介绍经典的微粒群优化算法(PSO)的基础上,研究基于量子行为的微粒群优化算法(QPSO)的二维热传导参数优化方法,具体介绍依据目标函数如何利用上述的算法去寻找最优参数组合。为了提高算法的收敛性和稳定性,在具体应用中对算法进行了改进,并进行了大量实验,结果显示在解决热传导反问题优化问题中,基于QPSO算法的性能比经典PSO算法更加优越,证明QPSO在热传导领域具有很大的实际应用价值。

英文摘要:

The research of heat conduction inverse problem starts late in domestic, there are lots of research methods, but ordinary methods are hard to be at the holistic best point. Purpose is to study the application of quantum-behaved particle swarm optimization (QPSO) in the two-dimensional heat conduction on the ground of classical particle swarm optimization (PSO) and how to use the above algorithm based on the objective function to seek the best parameter combination is introduced. In order to enhance the astringency and the stability of the algorithm, and the massive experiments are carried out. The results show in the solution heat conduction inverse problem optimization question, based on QPSO algorithm the performance is better than the classics PSO algorithm, and prove QPSO had determinate practical application value in the heat conduction domain.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程与设计》
  • 北大核心期刊(2011版)
  • 主管单位:中国航天科工集团
  • 主办单位:中国航天科工集团二院706所
  • 主编:汤铭瑞
  • 地址:北京142信箱37分箱
  • 邮编:100854
  • 邮箱:ced@china-ced.com
  • 电话:010-68389884
  • 国际标准刊号:ISSN:1000-7024
  • 国内统一刊号:ISSN:11-1775/TP
  • 邮发代号:82-425
  • 获奖情况:
  • 中国科学引文数据库来源期刊,中国学术期刊综合评价数据库来源期刊,中国科技论文统计与分析用期刊
  • 国内外数据库收录:
  • 波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:45616