采用胶晶模板技术结合光还原方法制备了Pt掺杂复合材料三维有序大孔Pt/ZrO2(3DOM Pt/ZrO2).通过X-射线衍射(XRD)、X-射线光电子能谱(XPS)、扫描电子显微镜(SEM)、紫外-可见漫反射吸收光谱(UV-Vis/DRS)和氮气吸附-脱附等测试方法对复合材料3DOM Pt/ZrO2的晶相、组成、结构、形貌以及表面物理化学性质等进行表征.结果表明,Pt掺杂复合材料3DOM Pt/ZrO2与单体ZrO2的晶相相一致,其形貌呈现三维有序大孔结构,且孔结构排列整齐有序,孔壁为介孔结构.经光还原作用后该复合材料中Pt主要以单质形式存在,并且均匀分布在三维有序复合材料表面.同时,与单体ZrO2相比,复合材料3DOM Pt/ZrO2的BET比表面积显著增大,光吸收性能发生改变,在240~350nm间呈现强吸收.另外,在多模式光降解实验中,3DOM Pt/ZrO2的光活性明显增强.同时,其光解水制氢性能差不多是P25的2.5倍.
In this paper, three-dimensionally ordered macroporous (3DOM) composite Pt/ZrO2 was prepared by the colloidal crystal template technology combined with photoreduction method. The composition, crystalline structure, morphology and surface physicochemical properties of 3DOM Pt/ZrO2 were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Scanning electron microscopy (SEM), UV-visible diffuse reflectance (UV-vis/DRS), and nitrogen adsorption-desorption testing methods. The results showed that 3DOM Pt/ZrO2 composite had the tetragonal phase of ZrO2, which exhibited a three-dimensionally ordered macroporous structure, whose pore structure was neat and orderly, and pore walls were the mesoporous structure. Pt mainly showed the elemental form in composite 3DOM Pt/ZrO2, which evenly distributed on the surface of the composite material. At the same time, compared with the monomer of ZrO2, the BET specific surface area of composite 3DOM Pt/ZrO2 was significantly increased, and the optical absorption was changed, strong absorption occured at 240~350 nm. Otherwise, in the multi-mode photocatalytic experiments, the photocatalytic activity of 3DOM Pt/ZrO2 obviously was enhanced; meanwhile, the hydrogen yield of the 3DOM Pt/ZrO2 composite was 2.5 times that of commercial P25, which also showed excellent photocatalytic activity.