位置:成果数据库 > 期刊 > 期刊详情页
月面巡视探测器立体相机共线方程的建立
  • 期刊名称:《航天器工程》2007年第16卷第3期
  • 时间:0
  • 分类:TP751[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]国家海洋局第三海洋研究所,福建厦门361005, [2]北京空间飞行器总体设计部,北京100094, [3]武汉大学遥感信息工程学院,湖北武汉430079, [4]中国科学院遥感应用研究所,北京100101
  • 相关基金:国家863高技术研究发展计划(2007AA12Z318);国家自然科学基金(41072298,40671160);Supported by National High Technology Research and Development Program of China(2007AA12Z318),National Natural Science Foundation of China(41072298,40671160)
  • 相关项目:我国月面巡视探测器高精度定位技术基础研究
中文摘要:

嫦娥工程二期要求嫦娥3号的安全降落是最为关键的任务.因此,提出了一种基于压缩感知的超分辨率图像重建方法,根据经过模糊处理并加入噪声的低分辨率图像,重建原始的高分辨率图像,实现了月球探测器着陆图像的超分辨率重建.算法采用局部Sparse-Land模型,从美国阿波罗计划获取的月球影像、嫦娥1、2号卫星影像和嫦娥工程二期试验中获取的月球探测器图像中提取了大量训练图块,采用K-SVD算法完成了高、低分辨率过完备字典Al和Ah的学习,通过求解优化问题,获得待处理低分辨率图块的稀疏表示,并将表示系数用于Ah,以生成对应的高分辨率图块.最后,运用最小二乘算法,得到满足重构约束的高分辨率图像.实验验证了算法的有效性,表明其在视觉效果及PSNR和RMSE指标上均优于插值方法和Yang的方法.

英文摘要:

Because the landing security of ChangE-3 is the most critical requirements during the second stage of Change project, the high-resolution landing image is necessary. The super-resolution reconstruction problem for the single Lunar Rover landing image was solved using compressed sensing theory. A super-resolution reconstruction algorithm for sparse representation by using over-complete dictionary was presented. The goal was to reconstruct an original image from its blurred and down-scaled noisy version. The algorithm assumed a local Sparse-Land model on image patches, serving as regularization. The images from Apollo project, CE-1, CE-2 and tests of the second stage of Change project were ap- plied to extract patches for building two dictionaries. The K-SVD algorithm was adopted for training the dictionaries. Through solving optimization problem via Orthogonal Matching Pursuit algorithm, the sparse representation for each low- resolution landing image patch with respect to Al was obtained. The representation coefficients were applied to Ah in order to generate the corresponding high-resolution landing image patch. At the end of the experiment the high-resolution im- age which satisfied the reconstruction constraint was obtained by using least squares algorithm. Numerical experiments for Lunar Rover landing images from the tests of the second stage of Change project demonstrated the effectiveness of the proposed algorithm. Moreover, the proposed algorithm outperforms bicubic interpolation based method and the algo- rithm via Yang in terms of visual quality, the Peak Signal to Noise Ratio (PSNR) and Root Mean Square Error ( RMSE).

同期刊论文项目
同项目期刊论文